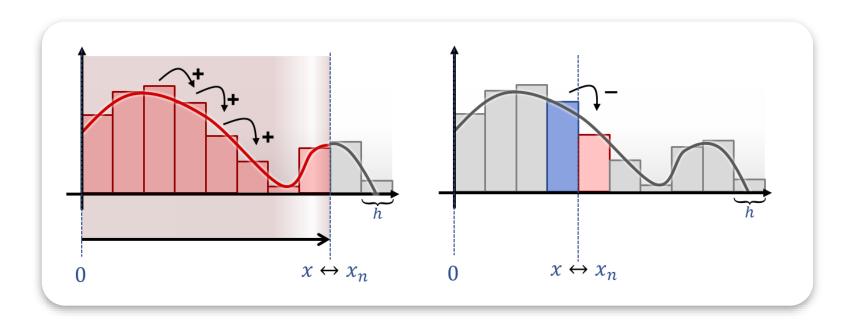
Modelling 1 SUMMER TERM 2020



LECTURE 20

Differential & Functional Equations

Functional Equations

(usually: Differential & Integral Equations)

Functional Equations

Searching for functions

Implicit definition of a function

$$F(f) = 0$$

- Function f: unknown
- Function F: constraint on f

Functional Equations

Linear functional equations

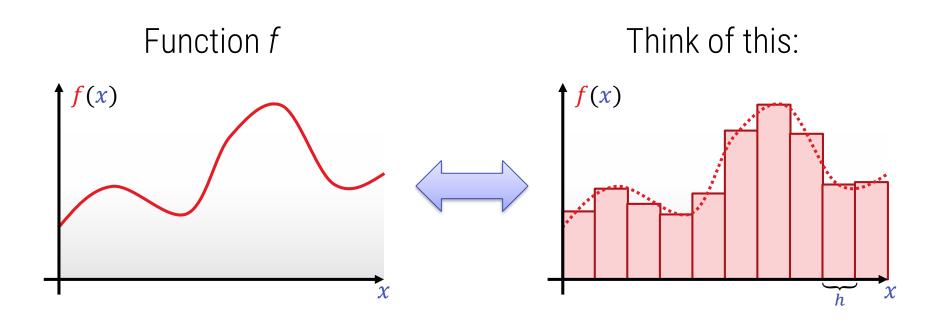
- F is linear ("linear operator").
 - We use L in that case.
 - We drop the (\cdot) in analogy to matrix multiplication
- Homogeneous:

$$Lf = 0$$

Inhomogeneous:

$$Lf = g$$

Discrete Analogy



We Know the Structure...

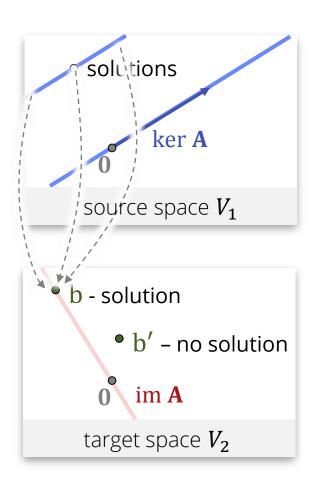
Structure of a functional equation

- Linear solution space
- Add inhomogeneous solution to any homogeneous

Reminder (Linear Maps)

Solutions to linear system

- $\mathbf{A}\mathbf{X} = \mathbf{0}$
 - Solution space = ker A
- $\mathbf{A}\mathbf{x} = \mathbf{b}$
 - Solution if and only if b ∈ im A
- Set of all solutions:
 - One y with Ay = b
 - Add any solution of $\mathbf{A}\mathbf{x} = \mathbf{0}$
 - Solution set: y + ker A



Differential Equations

Ordinary

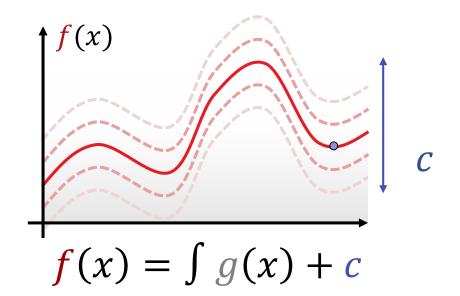
Differential Equations (ODEs)

Examples

Boundary Conditions

Solution space

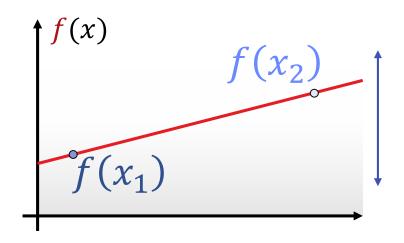
- dim ker $\frac{d}{dx} = 1$
- Solution space is 1-dimensional
- One degree of freedom



Boundary Conditions

Solution space

- dim ker $\frac{d^2}{dx^2} = 2$
- Solution space is 2-dimensional
- Two degrees of freedom



Discretized

Continuous Equation

$$\frac{d}{dx}f(x) + 1 \cdot f(x) = 0$$

Matrix Approximation

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} + \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \end{bmatrix} = 0$$

Discretized

Continuous Equation

$$\frac{d^2}{dx^2}f(x)=0$$

Matrix Approximation

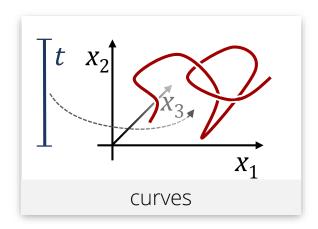
$$\frac{1}{h^2} \begin{pmatrix}
-1 & 1 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 \\
0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 1 & -1
\end{pmatrix} \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
y_5
\end{pmatrix} = 0$$

What is it about?

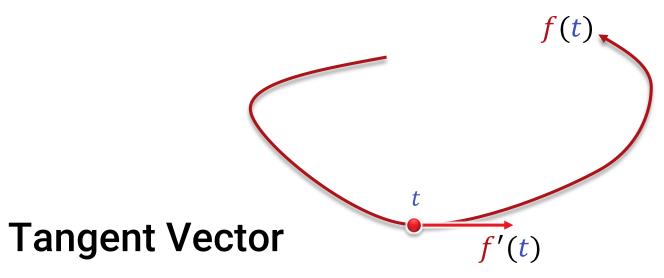
Designing Curves

One Parameter functions

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)



Geometric Meaning



- f' is the tangent vector
 - Higher order derivatives: also vectors
- Physical particle
 - First derivative $\dot{f} \cong$ velocity.
 - Second derivative $\ddot{f} \cong$ acceleration

Example

$$f: \mathbb{R} \to \mathbb{R}$$

$$a\frac{d^2}{dt^2}f(t) + b\frac{d}{dt}f(t) + cf(t) = g(t)$$

Example

- Linear
- 1dim ODE
- 2nd degree

First Order Derivatives Suffice

Higher order ODE

$$\frac{d^2}{dt^2}f(t) = g(t)$$

Convert to system (multi-dim.) of lower order DEs

Substitution

$$v(t) \coloneqq \frac{d}{dt} f(t)$$
$$\frac{d^2}{dt^2} f(t) = \frac{d}{dt} v(t)$$

System

$$v(t) = \frac{d}{dt}f(t)$$

$$\frac{d}{dt}v(t) = g(t)$$

General Form of an ODE

Unknown

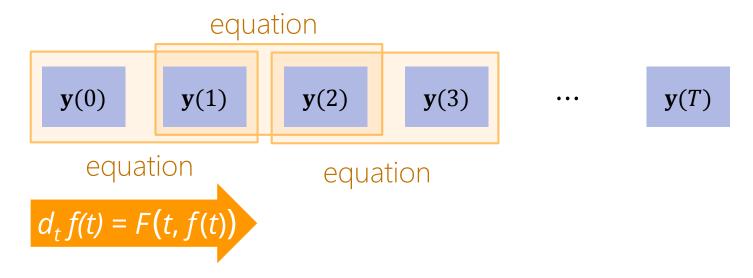
$$f: \mathbb{R} \to \mathbb{R}^n$$

Explicit Form

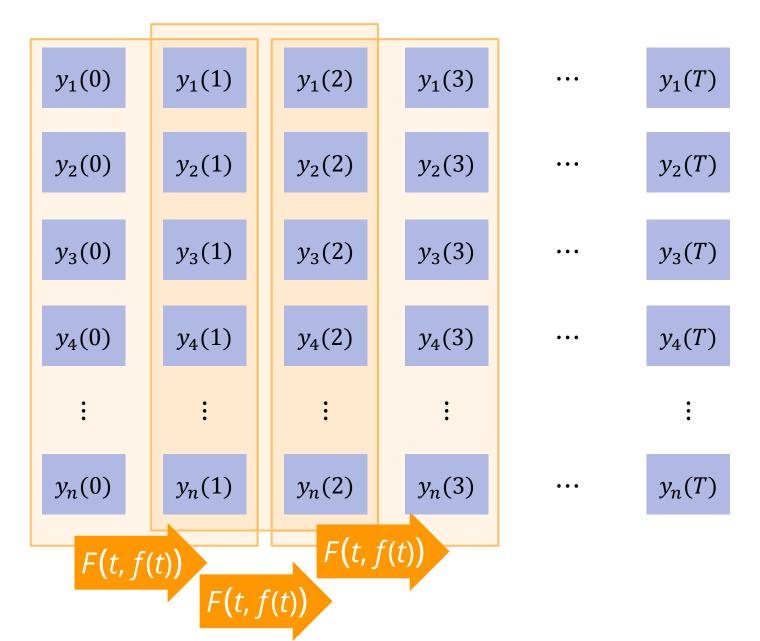
$$\frac{d}{dt}f(t) = F(t, f(t))$$

Chain-Structure

Causal Chain

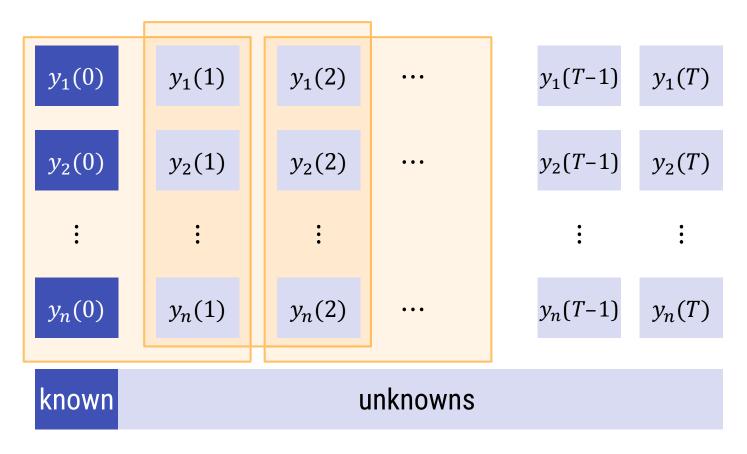


Structure of ODE



Initial Value Problems

Initial Value Problems



Solution

- Solve step-by-step
- Propagate information forward

Numerical Solvers

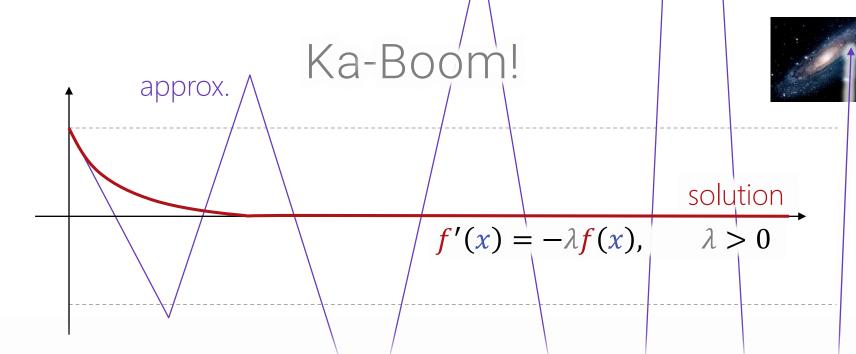
ODE

$$f: \mathbb{R} \to \mathbb{R}^n, \qquad \frac{d}{dt}f(t) = F(t, f(t))$$

Explicit Euler integrator

$$f(t_0)$$
 $f(t_1)$ $f(t_2)$ $f(t_3)$... $f(t_T)$

$$f(t_{i+1}) = f(t_i) + F(t_i, f(t_i)) \cdot (t_{i-1} - t_i)$$

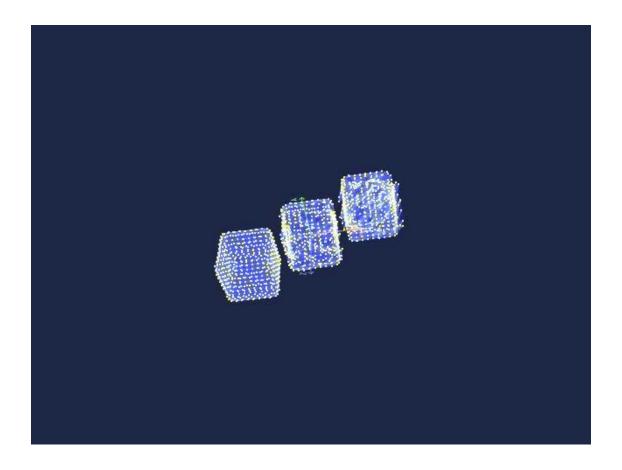


Explicit Euler integrator

$$f(t_{i+1}) = f(t_i) + F(t_i, f(t_i)) \cdot (t_{i-1} - t_i)$$

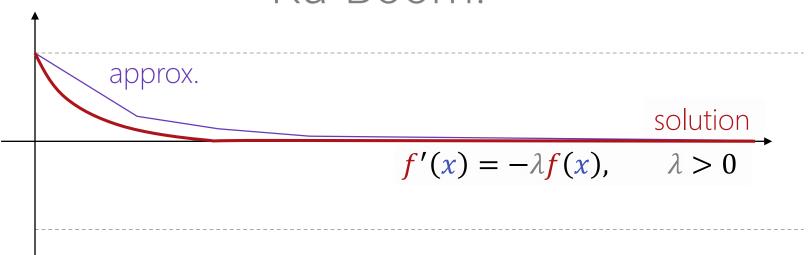
time step must be smaller than $|2\lambda|$, λ being the most negative eigenvalue of F

An Actual Example...



Stiff elasticity model (that I screwed up myself :-))

Ka-Boom!



Implicit Euler integrator

$$f(t_{i+1}) = f(t_i) + F(t_{i+1}, f(t_{i+1})) \cdot (t_{i-1} - t_i)$$

unconditionally stable (does not mean accurate)

downside: need to solve system of equations

Integrators - Variants

Higher consistency order

Local polynomial approximation

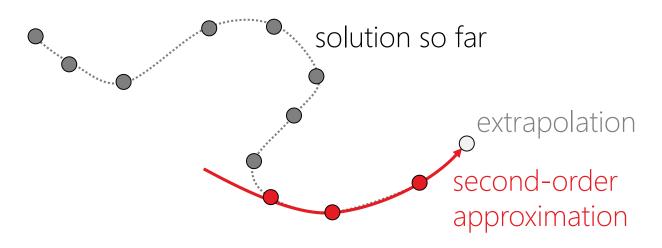
Basic Idea

- Local polynomial approximation
- Fitted to multiple evaluations of F(t, y)

Two Variants

- Runge-Kutta Methods: single time step
 - RK4 most popular
- (Linear) Multi-Step Methods: incl. previous time steps
 - BDF-2 popular for stiff problems (i.e., huge $|\lambda_{min}|$)

Integrators - Variants



Multi-Step Methods

- Linear MSM: Fit polynomial to last k steps
 - Explicit: predict next value
 - Implicit: optimize for next value
 - Specific implicit MSM of degree 2 (BDF-2 method) is very stable and accuracy is ok

Analytical Solutions

ODE

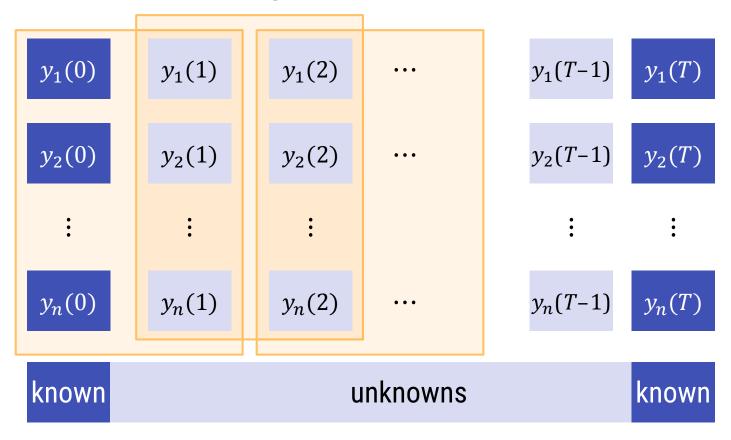
$$f: \mathbb{R} \to \mathbb{R}^n, \qquad \frac{d}{dt}f(t) = F(t, f(t))$$

Linear ODEs

- F linear in variables
- Analytical solution possible
 - Via matrix factorization
 - Jordan-normal-form (in C)
 - Solution based on complex exponentials
- Shift-invariant: Fourier transforms

Boundary Value Problems

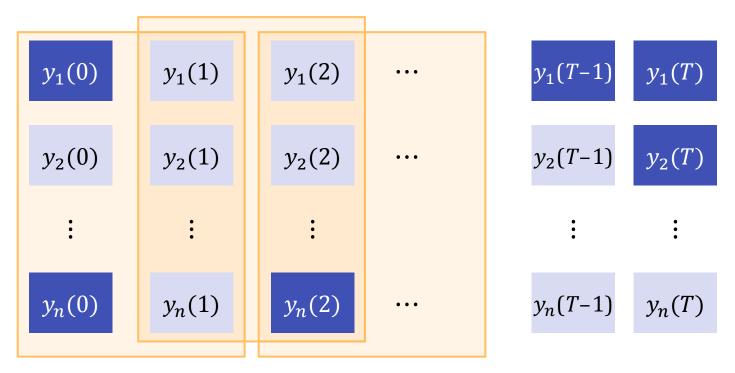
Boundary Value Problems



Solution

- Step-by-step does not work
- Need to solve global system of equations

General constraints



Variant

- Impose constraints all over the place
 - Analog to diffusion Images (link in script)
- Careful with degrees of freedom
 - We rather go for least-squares (more later)

ODE Example: Newtonian Physics

Example

Newtonian Physics

$$"F = m \cdot a"$$

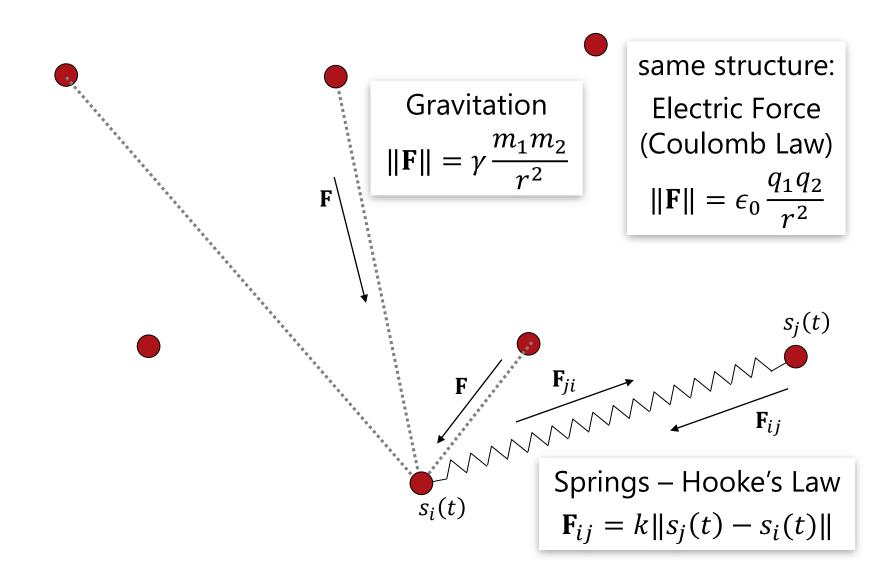
Which means

$$F(t,s(t)) = m \cdot a(t) = m \cdot \ddot{s}(t)$$

In other words...

$$\frac{d^2}{dt^2}s(t) = \frac{1}{m}F(t,s(t))$$

Particle Systems



Partial

Differential Equations (PDEs)

Multi-dimensional Inputs

One Parameter functions

- Functions $f: \mathbb{R}^n \to \mathbb{R}$ ("scalar field")
- Functions $f: \mathbb{R} \to \mathbb{R}^n$ ("curves")
- Functions $f: \mathbb{R}^n \to \mathbb{R}^m$ (general case)

We'll stick to that case for simplicity.

No fundamental difference.

Partial Differential Equations

Unknown

$$f: \mathbb{R}^n \to \mathbb{R}$$

Explicit Form

$$Df(\mathbf{x}) = F(\mathbf{x}, f(\mathbf{x}))$$

D: differential operator, including partials

Example

$$\frac{\partial^2}{\partial_{x_1}^2} f(\mathbf{x}) + \frac{\partial^2}{\partial_{x_2}^2} f(\mathbf{x}) = g(\mathbf{x})$$
Laplacian Δf

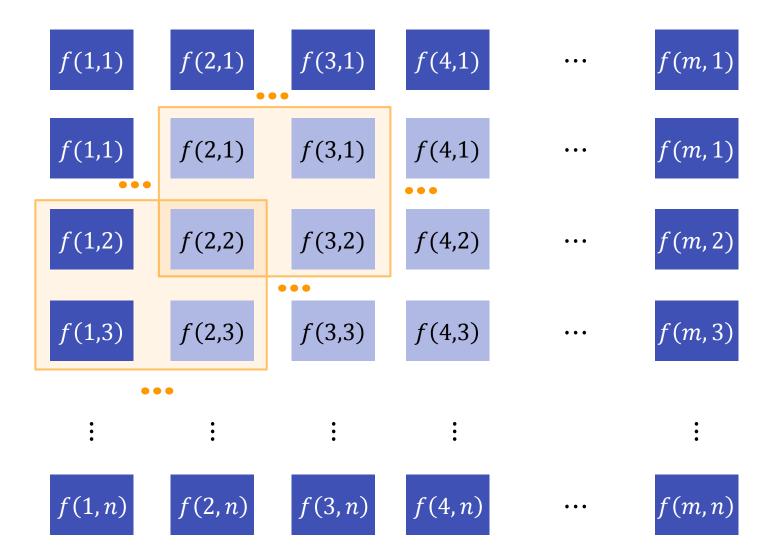
Structure of PDE

f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,2)	f(2,2)	f(3,2)	f(4,2)	•••	f(m,2)
f(1,3)	f(2,3)	f(3,3)	f(4,3)		f(m,3)
:	:	:	F(z)	x, f(x)	:
f(1,n)	f(2,n)	f(3,n)	f(4,n)		f(m,n)

Structure of PDE

f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m, 1)
f(1,1)	f(2,1)	f(3,1)	f(4,1)	•••	f(m,1)
f(1,2)	f(2,2)	f(3,2)	f(4,2)	•••	f(m,2)
f(1,3)	f(2,3)	f(3,3)	f(4,3)	•••	f(m,3)
:	:	:	:		:
f(1,n)	f(2,n)	f(3,n)	f(4,n)	•••	f(m,n)

Boundary Value Problem



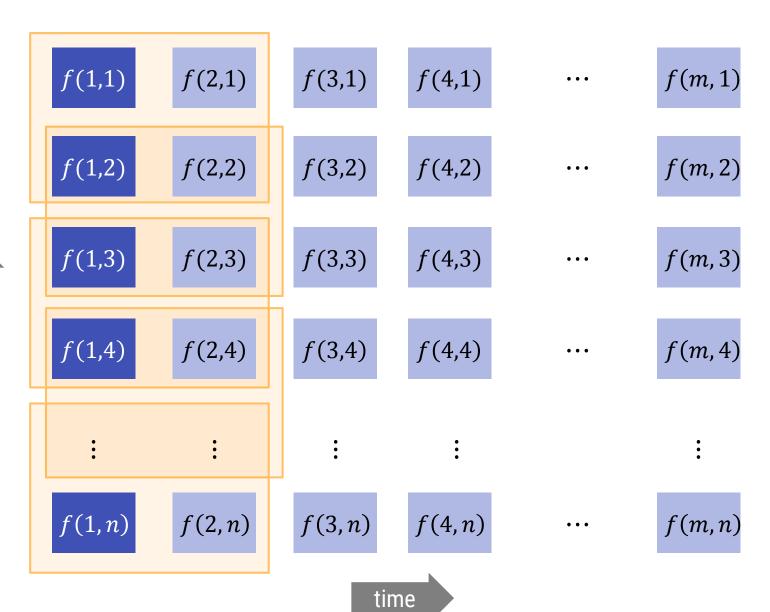
Solving PDEs

Usually boundary value problems

- Need global solver anyways
- No time stepping
- Linear PDEs: linear system of equations
 - We are looking at that case

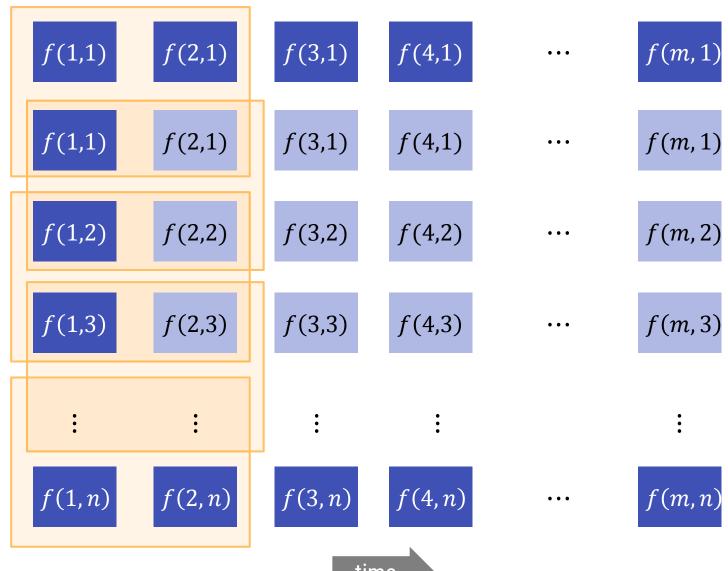
A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, D. Sales: Diffusion Curves: A Vector Representation for Smooth-Shaded Images. In: ACM Transactions on Graphics, SIGGRAPH 2008.

Initial Value Problem



space

Fixed Spatial Boundaries



space

time

Examples

Heat Diffusion

$$f: \mathbb{R}^3 \supset (\Omega \times \mathbb{R}) \to \mathbb{R}$$

$$\partial_t f = -\lambda \left(\partial_x^2 + \partial_y^2\right) f$$

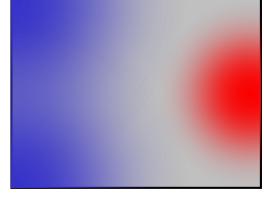
Problem

- Initial heat distribution given
- Compute progression over time

Class

- Second order, "parabolic"
- Smoothes out details over time

$$f(\mathbf{x},0) = g(\mathbf{x})$$



Examples

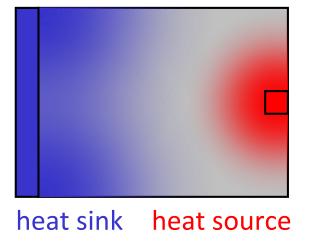
Diffusion Equation

$$f: \mathbb{R}^2 \supset \Omega \to \mathbb{R}$$

$$\left(\partial_x^2 + \partial_y^2\right) f = 0$$

$$\Delta f$$

$$\forall \mathbf{x} \in \text{Boundary: } f(\mathbf{x}) = g(\mathbf{x})$$



Problem

- Boundary conditions for heat given
- Compute steady state $\partial_t = 0$

Examples

Wave Equation

$$f: \mathbb{R}^3 \supset (\Omega \times \mathbb{R}) \to \mathbb{R}$$

$$\partial_t^2 f = \lambda \left(\partial_x^2 + \partial_y^2\right) f$$

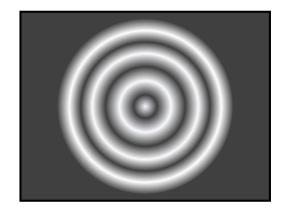
Problem

- Driver function given (time/space)
- Compute progression over time

Class

- Second order, "hyperbolic"
- Transports information through space (no information loss)

$$f(\mathbf{0},t) = g(t)$$



Solve system of equations for each time step

Solver

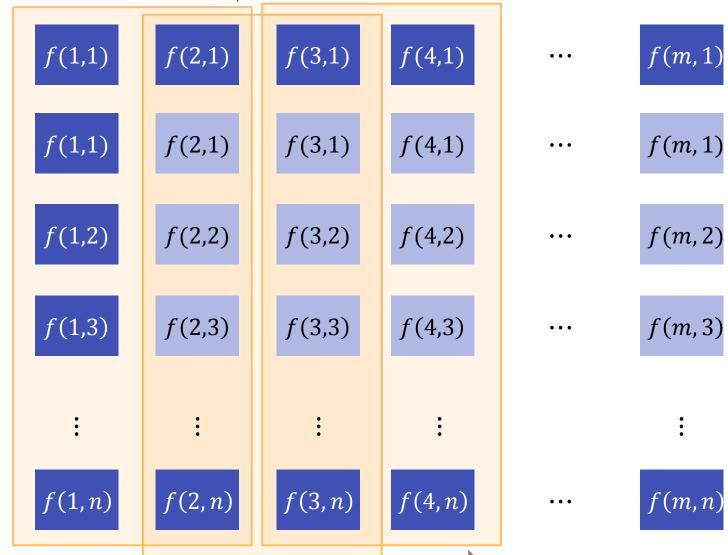
f(3,1)f(4,1)f(m, 1)f(2,1)f(1,1)f(3,1)f(1,1)f(2,1)f(4,1)f(m,1)f(1,2)f(3,2)f(2,2)f(4,2)f(m,2)f(1,3)f(2,3)f(3,3)f(4,3)f(m,3)f(m,n)f(1,n)f(2,n)f(3,n)f(4,n)

space

time

Solve system of equations for each time step

Solver



space

time

Integral Equations

Integral Equations

Use integrals to construct L:

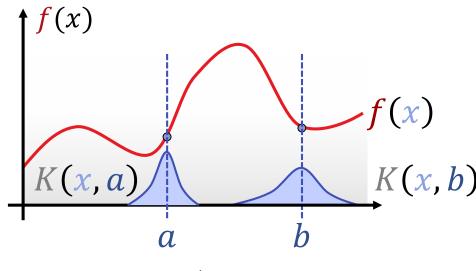
For example:

$$f(x) = g(x) + \int_0^1 K(x, y) \cdot f(y) dy$$

- Given (known): functions K, g
- **Unknown**: function *f*
- As operator equation Lf = g

$$L(f(x)) = \left[f(x) - \int_0^1 K(x, y) \cdot f(y) dy \right]$$
$$g = g(x)$$

What does it do?

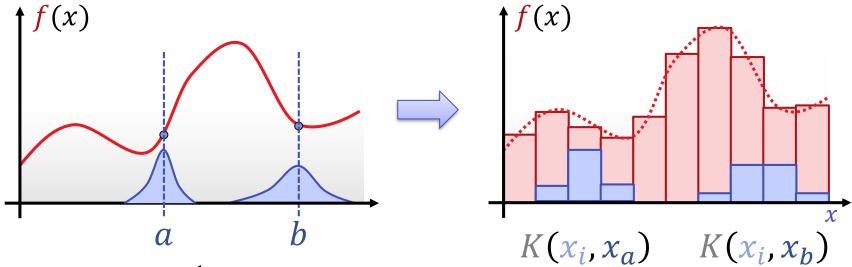


$$f(x) = g(x) + \int_0^1 K(x, y) \cdot f(y) dy$$

Fredholm integral equation (2nd kind):

- Prescribe weighted averages of function values
- Add constant function

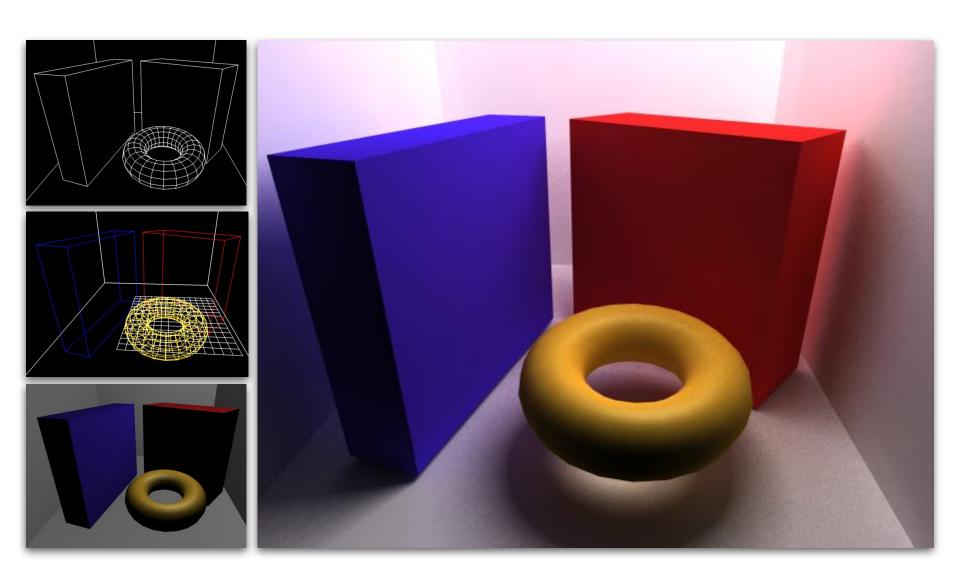
Discrete Analogy



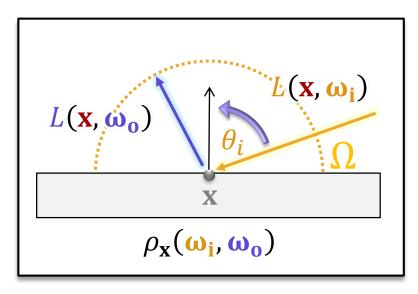
$$f(x) = g(x) + \int_0^1 K(x, y) \cdot f(y) dy$$

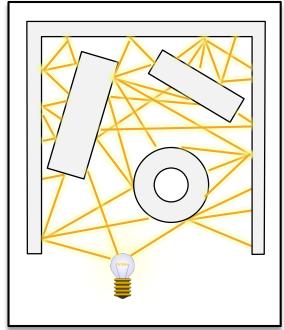
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 1 & 2 & 0.5 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \mathbf{x}, \text{ i.e., } \begin{bmatrix} \mathbf{I} - \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 1 & 2 & 0.5 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 3 \end{pmatrix}$$

"Global Illumination"



Example: Rendering Equation



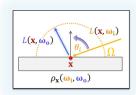


Rendering Equation

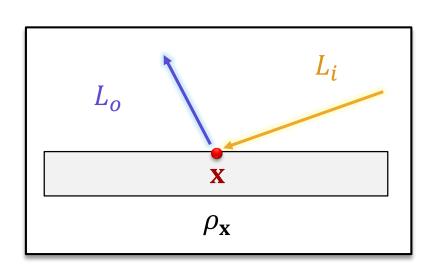
$$L(\mathbf{x}, \mathbf{\omega_0}) = E(\mathbf{x}, \mathbf{\omega_0}) + \int_{\omega_i \in \Omega} [L(\mathbf{x}, \mathbf{\omega_i}) \cdot \rho_{\mathbf{x}}(\mathbf{\omega_i}, \mathbf{\omega_0}) \cdot \cos \theta_i] d\omega_i$$

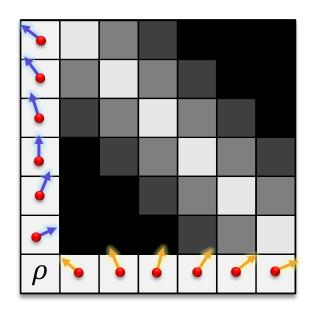
emission

reflection



Interaction with Surfaces



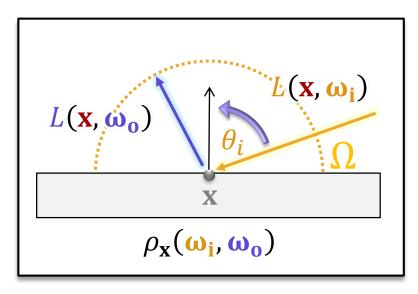


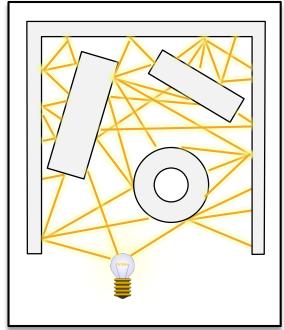
Bi-direction Reflectance Distribution Function (BRDF)

Bidirectional Reflectance Distribution Function (BRDF)

MIRROR GLOSSY SURFACE DIFFUSE SURFACE

Example: Rendering Equation



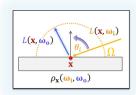


Rendering Equation

$$L(\mathbf{x}, \mathbf{\omega_0}) = E(\mathbf{x}, \mathbf{\omega_0}) + \int_{\omega_i \in \Omega} [L(\mathbf{x}, \mathbf{\omega_i}) \cdot \rho_{\mathbf{x}}(\mathbf{\omega_i}, \mathbf{\omega_0}) \cdot \cos \theta_i] d\omega_i$$

emission

reflection



Classification

Linear Functional Equation

- Lf = g solving a linear system
 - Discretization with "array"
 - "Finite differences" for differential equations
 - Replace f'(x) with $[f(x_i) f(x_{i-1})]/(x_i x_{i-1})$
 - Discretization with linear ansatz: "finite elements"
 - Analytical solution?
 - If L is diagonizable and we know the eigenfunctions:
 Diagonal system
 - Scaling of projections of g on eigenfunctions

Linear Time Evolution

- Linear ODE $(\mathbf{x} \in \mathbb{R}^d)$

 - Solution

$$\mathbf{x}(t) = \exp(t \cdot \mathbf{A}) \mathbf{x}(0)$$

A diagonizable?

$$\mathbf{U} \exp(t \cdot \mathbf{D}) \mathbf{U}^{\mathsf{T}} \mathbf{x}(0)$$

$$= \mathbf{U} \begin{pmatrix} \exp(\lambda_1)^t \\ \vdots \\ \exp(\lambda_d)^t \end{pmatrix} \mathbf{U}^{\mathsf{T}} \mathbf{x}(0)$$

- A not diagonizable? Jordan Normal Form
- Inhomogeneous case similar*

Linear Time Evolution

- Linear PDE with simple (Markovian) time evolution
 - $\frac{d}{dt}f = \mathbf{L}f$
 - Solution

$$\mathbf{x}(t) = \exp(t \cdot \mathbf{L}) \, \mathbf{x}(0)$$

- L diagonizable? ("self-adjoint" = symmetric?)
 - Eigenfunctions u_i

$$f(t) = \sum_{i} u_{i}(t) \cdot \exp(t \cdot \lambda_{1}) \langle f(0), u_{i} \rangle$$

Shift invariant Operators

- Linear Operator shift invariant?
 - (Time invariant) ordinary differential equations
 - (Spatially/temporally uniform) partial differential equations
- We know the eigenbasis already!
 - Fourier-basis
 - For example in time evolution: We can write down the solution by exponential scaling of Fourier-coefficients
 - See tutorials (heat equation)