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Differential & Functional Equations
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-unctional Equations

(usually: Differential & Integral
Equations)




Functional Equations

Searching for functions
= |mplicit definition of a function

F(f) =0
= Function f: unknown
= Function F: constraint on f



Functional Equations

Linear functional equations

= [ is linear (“linear operator”).
= We use L in that case.
= We drop the (-) in analogy to matrix multiplication

= Homogeneous:

Lf =0
= I[nhomogeneous:

Lf =g



Discrete Analogy

Function f
17)

A/\<:>

[ /()

Think of this:

...
2




We Know the Structure...

Structure of a functional equation
= Linear solution space
= Add inhomogeneous solution to any homogeneous



Reminder (Linear Maps)

Solutions to linear system

- AX = 0 /q{lt‘\tions
= Solution space = ker A

/ ! ker A
- AX —_ b .: P ;/0//'
= Solution ifandonly if b € im A ,"sogr/ce space V;

= Set of all solutions:
= OneywithAy = b
- Add any solution of Ax = 0 ® b’ - no solution
- Solution set: y + ker A 0 imA

target space V,

NS _
® b - solution



Differential Equations



Ordinary

Differential Equations
(ODEs)




Examples



Boundary Conditions

Solution space +F ()

p \
L) = g0
= dim keri =1

dx v
= Solution space is

1-dimensional f(x)=[gx +c
= One degree of freedom




Boundary Conditions

Solution space + )
2 X |
. d*
* dimker—— =2 f(xq) }

= Solution space is
2-dimensional

= Two degrees of freedom



Discretized

Continuous Equation

d
af(x)-l'l'f(x):()

Matrix Approximation

1 0 0 0 O 1 0 0 O
11-1 1 0 0 O 0 1 0 O
7 0o -1 1 O Of+]0 0 1 O

0 O -1 1 0 0 0 0 1

0 0 0O -1 1 0O 0 0 O

-0 O O O




Discretized

Continuous Equation
d2
T2 f) =0

Matrix Approximation

-1 1 0 0 0
(1 -2 1 0 o0
=0 1 -2 1 0

o 0 1 -2 1

o 0 0 1 -1



What is it about?



Designing Curves

One Parameter functions
= Functions f: R* - R (“scalar field")

J Functions f:R - R™  (“curves”)

= Functions f: R™ - R™ (general case)

curves



Geometric Meaning
f(©)

t

o

Tangent Vector £1(6)

= f'Is the tangent vector

= Higher order derivatives: also vectors
= Physical particle

- First derivative f £ velocity.

- Second derivative f £ acceleration



Example

[fR->R

d* d
a——F(©) +b—f(©) +cf(6) = g(©)

Example

= Linear
= 1dim ODE
= 2nd degree



First Order Derivatives Suffice

Higher order ODE

d? B
Wf(t) = g(t)

Convert to system (multi-dim.) of lower order DEs

Substitution System
B d B d
Vgt) = /() T;(t) =)
d d
ﬁf(t) = %V(t) Ev(t) = g(t)



General Form of an ODE

Unknown
TR —->R"

Explicit Form

d
—£(0) = F(t, f(0)



Chain-Structure

Causal Chain

equation

equation equation

0,10~ FL 0]




Structure of ODE




Initial Value Problems



Initial Value Problems

y1(1) y1(2) y1(T-1)
y2(1) y2(2) y2(T-1)

| W@ | - e
unknowns

Solution
= Solve step-by-step

= Propagate information forward

y1(T)

y2(T)

Yn(T)



Numerical Solvers

ODE
d
fiRSRY,  —f(0) =F(t,f(1)

Explicit Euler integrator

f(to) f(ty) f(t2) f(ts) f(tr)

fltiv) =)+ F(ty, (&) - (tioa — )



Ka-Boom!

appProx. 1
/ \ solution :
\/ \ / f(x) é\—ﬂf(x),/ P >\ 0

Explicit Euler integrator

f(tive) = F@) + F(t, f(@&)) - (timy — )

J

time step must be

smaller than |24/,
A being the most negative \ \

eigenvalue of F




An Actual Example...

Stiff elasticity model (that | screwed up myself :-) )



Ka-Boom!

apProx.

solution

() =—Af(x), A1>0

Implicit Euler integrator

f(tiv) = f(t;) + F(ti+1:f(ti+1)) (Lo — t;)

unconditionally stable
(does not mean accurate)

downside:
need to solve system of equations



Integrators - Variants

Higher consistency order
= Local polynomial approximation

Basic Idea
= Local polynomial approximation
= Fitted to multiple evaluations of F(t,y)

Two Variants
= Runge-Kutta Methods: single time step
= RK4 most popular

= (Linear) Multi-Step Methods: incl. previous time steps
= BDF-2 popular for stiff problems (i.e., huge |A,,,in])



Integrators - Variants

e @9 solution so far

o
o
o
e
. o
. o
. o
..... .
5
g
o
0
o

@ extrapolation

second-order
approximation

Multi-Step Methods

= Linear MSM: Fit polynomial to last k steps
= Explicit: predict next value

= Implicit: optimize for next value

= Specific implicit MSM of degree 2 (BDF-2 method)
IS very stable and accuracy is ok



Analytical Solutions

ODE
d
fiRSRY,  —f(0) =F(t,f(1)

Linear ODEs

= F |linear in variables

= Analytical solution possible
= Via matrix factorization
= Jordan-normal-form (in C)
= Solution based on complex exponentials

= Shift-invariant: Fourier transforms



Boundary Value

Proplems




Boundary Value Problems

y1(1) y1(2) yi(T-1) BZEs
y2(1) y2(2) y2(T-1)

yn(l) Yn(z) et Yu(T-1) B2 (T)

Solution
= Step-by-step does not work

y2(T)

= Need to solve global system of equations



General constraints

y2(0) y2(1) y2(2) e y2(T-1)

Variant

= |[mpose constraints all over the place
= Analog to diffusion Images (link in script)

= Careful with degrees of freedom
= We rather go for least-squares (more later)

y2(T)

ya(T-1)  yu(T)




ODE Example:
Newtonian Physics




Example

Newtonian Physics
((F — m.a))

Which means
F(t,s(t)) =m-a(t) =m-35(t)

In other words...
d2
—5(0) = —F(t s(6))



Particle Systems

O

® same structure:
' Gravitation Electric Force
mpm; Coulomb Law
IR =y iz )

r Fll = 419>

IFll = €0
s;(t)

Springs — Hooke's Law
Fi; = k|ls;j(t) — s; (D)l

s; (t)



Partial

\ﬁferential Equations

(PDEs)




Multi-dimensional Inputs

One Parameter functions
Jd Functions f: R" - R

= Functions f:R - R™  (“curves”)

J Functions f: R® - R™ (general case)

we'll stick to that
case for simplicity.

(“scalar field”)

No fundamental
difference.



Partial Differential Equations

Unknown
[R*" >R

Explicit Form
Df(x) = F(x f(x)

D: differential operator, including partials

Example
2
( az f(X)+ f(X) = g(x)

Laplacian Af



Structure of PDE




Structure of PDE




Boundary Value Problem

m

O I

peoy ) fG1H f4D f(m, 1)

e f(22) fGB2)  f(42) f(m,2)

f(1,3) f(2,3) fB3) f43) f(m,3)

0N IE DD Em




Solvmg PDES

[Orzan et al. 2008] [Orzan et al. 2008]
Usually boundary value problems

= Need global solver anyways
= No time stepping

= Linear PDEs: linear system of equations
= We are looking at that case

A. Orzan, A. Bousseau, H. Winnemoller, P. Barla, J. Thollot, D. Sales:
Diffusion Curves: A Vector Representation for Smooth-Shaded Images.
In: ACM Transactions on Graphics, SIGGRAPH 2008.



Initial Value Problem




Fixed Spatial Boundaries

O I I

o

peoy ) fG1H f4D f(m, 1)

E W 22  f32)  f(42) f(m,2)

f(1,3) f(2,3) fB3) f43) f(m,3)

o=

I




Examples

f(x,0) = g(x)

Heat Diffusion
fIRRD2(OUxR)-> R
0. f = —Aga,% 0%) f
Af

Problem
= [nitial heat distribution given

= Compute progression over time

Class
= Second order, “parabolic’

= Smoothes out details over time



Examples

Diffusion Equation
ffREDO-R
\(a,% 07) f=0
Y
Af

heat sink heat source

Vx € Boundary: f(x) = g(x)

Problem
= Boundary conditions for heat given
= Compute steady state d;, =0



Examples

£(0,t) = g(t)

Wave Equation
fR®D (OUxR) >R
0 f = (03 Ya;) f

Problem Af

= Driver function given (time/space)

= Compute progression over time

Class
= Second order, "hyperbolic”

= Transports information through space
(no information loss)



Solve system of equations So|\/e|’
for each time step

peoy ) fGH f4D f(m, 1)

E N  f22 fB2)  f(42) f(m,2)
f(m,3)

f(1,3) f@23) B3  f(43)

)




Solve system of equations So|\/e|’
for each time step

F(1,1) EEEACHO R (CAY RN AC XY f(m, 1)

E ™ 22 (fG2) f(42) f(m,2)
f(m,3)

f(1,3) f@23)  fB3)  f(43)

)




Integral Equations



Integral Equations

Use integrals to construct :

= For example:
1

FC) = o( )+f K(,y) - FO)dy
0

= Given (known):  functions K, g
= Unknown: function f

= As operator equation Lf = g

1
LCf(0)) = [f(X) —J K(x,y) 'f(y)dy]
0

g=gx)



What does it do?
tF()

K( a)/\ /\__g( b)

FC) = o( >+j K(y) - fFO)dy
0

Fredholm integral equation (2"d kind):
= Prescribe weighted averages of function values
= Add constant function



1/ (x)

Discrete Analogy

=

1

f()=g<>+f1<(

0

e

I
W N WN R

_|_
cCo o oR
OO O RN
OO R Wk

a b

) - f(y)dy

O Rr DN WO

tf(x)
=

K( ;xa) K( be)

1 2 1 0 O 1

0O 1 3 3 1 2
I-10 0 1 2 05 ]|x=1]3
O 0 0 1 2 2

O 0 0 0 1 3




“Global lllumination”




Example: Rendering Equation

L(x, wo)\I

Rendering Equation

SN
e

e

L(X,w,) = E(X, ®,) +f [ (%, w;) - pg(w;, w,) - cos ]d

€

A g

emission

o/ )
\E - /

reflection

(x, ;)
Lx, mu)\r\
X
(05, g




Interaction with Surfaces

LO\
-
X

Px

Bi-direction Reflectance Distribution Function (BRDF)



Bidirectional Reflectance Distribution Function (BRDF)

MIRROR

GLOSSY SURFACE

DIFFUSE SURFACE




Example: Rendering Equation

L(x, wo)\I

Rendering Equation

SN
e

e

L(X,w,) = E(X, ®,) +f [ (%, w;) - pg(w;, w,) - cos ]d

€

A g

emission

o/ )
\E - /

reflection

(x, ;)
Lx, mu)\r\
X
(05, g




Classification



Linear Functional Equations

Linear Functional Equation

= .f = g — solving a linear system
= Discretization with “array”
- "Finite differences” for differential equations
- Replace f'(x) with [f Ce;) — fFCri-1)1/ (e — xi-1)
= Discretization with linear ansatz: “finite elements”
= Analytical solution?

— If L is diagonizable and we know the eigenfunctions:
Diagonal system

— Scaling of projections of g on eigenfunctions



Linear Functional Equations

Linear Time Evolution
= Linear ODE (x € R%)
: %x(t) = Ax

= Solution
x(t) = exp(t - A) x(0)
= A diagonizable?

Uexp(t - D) UTx(0)

exp (/11)t
exp (Ad)t

= A not diagonizable? — Jordan Normal Form
= Inhomogeneous case similar”

*) see e.g. https://de.wikipedia.org/wiki/Matrixexponential



Linear Functional Equations

Linear Time Evolution

= Linear PDE with simple (Markovian) time evolution
 Sf=Lf
= Solution
x(t) = exp(t - L)x(0)
= L diagonizable? (“self-adjoint” = symmetric?)
— Eigenfunctions u;

[ = ) ui(0) - exp(t - 2,) (/ (0), )

l



Linear Functional Equations

Shift invariant Operators

= Linear Operator shift invariant?
= (Time invariant) ordinary differential equations
= (Spatially/temporally uniform) partial differential equations

= We know the eigenbasis already!

= Fourier-basis

= For example in time evolution: We can write down the
solution by exponential scaling of Fourier-coefficients

= See tutorials (heat equation)



